- A+
影像处理范文第1篇
【关键词】数字图像;医学;影像
1研究对象及方法
在本次研究过中我们挑选了8例肺癌患者,其中男性患者和女性患者各有5例。经过手术以及组织病理检验证实这八位患者均换有肺癌,所有患者均进行CT检查以及PET全身影像。两项检查之间的间距不超过一周。其中,PET中采用的是PET仪,需要患者在检查之前进食六小时,注射麻醉剂,一小时后平躺呼吸进行透射扫描交替进行数据采集。CT检查所使用的是GELightspeedultraspiralCT。患者屏住呼吸之后进行胸部的扫描。数据传输过程中,PET发射扫描和所获得的三维容积数据文件格式为*.V,而CT检查的数据为连续横断面断层图像数据。可以利用计算机传入pc客户端。对于CT图像需要进行三维重建,可以利用三线性内插法来获取三维容积数据。在像素转化时也可以采用三线性内插法将两组检查的三维容积数据转化为同等像素大小的三维数组,在数据转换中可以将两组数据转化为八位字节的数据,经过ps软件处理之后来获得256个灰度级的像素灰度值,最终要进行图像的输出,获得的PET和CT融合图像,需要以容积重组技术来进行三维立体呈现。分别获得不同断层的融合图像,能够显示在计算机屏幕上,也可形成多种文件格式进行储存。
2研究结果
如下图所示是脑部XCT的影像,左图是最初的CT图像,成像参数值密布处于低值区域,而右图是经过Ps软件处理之后的CT影像。比较两种CT影像最终要进行图像的输出,获得的PET和CT融合图像,在具体利用ps软件过程中的步骤如下所示:首先,在计算机界面运行ps软件打开最初的图片左图像,点击调整之后,打开曲线对话框,曲线是用途较广的色调调整命令,能够利用该功能来调整图像的亮度,对比度等,在这个对话框中,红色标代表源图像的色调,而纵坐标代表调整之后图像的色调,在进行曲线调整过程中,首先需要在曲线上的点单击,并左键拖动即可改变曲线的形状,当曲线向左弯曲时,表示色调变亮,反之色调变暗。点击低值区域的某个点并拖动曲线可以看到图像会随着拖动范围而发生变化,清晰度也会发生一定程度的变化。除此之外,还需要调整不同的点的调整曲线,直到最CT图像呈现最理想化,点击确定之后,就可以完成图像的调整。通过观察,我们发现这八位肺癌患者所有的病灶能够CT图像上明确定位,并且影像人员可以清晰的看出病灶与周围解剖结构的关系,将这种交互式的三维容积图像能够利用计算机ps软件进行处理前,对于计算机的性能要求不高,计算效果较快,所有的操作可以在十分钟之内完成。在医学影响中常用的PET和CT图像可以融合为PET图像来提供患者的解剖信息,由于这些影像空间分辨率较低,而且单从PET图像上很难看出患者的病灶与周围组织结构的解剖关系。然而,通过计算机ps软件对PET-CT图像进行计算和处理,能够提高影像人员对于患者诊断的准确性,具有一定的临床价值。
3计算机对医学影像的重要性
从根本上来说现在医学影像是利用电离辐射的性质以及物质相互作用规律,利用现代化技术来进行采集医学成像的数据,遵循一定的数学方法来重建数字图像,因而需要深入分析医学图像所隐藏的信息,并控制好图像质量。然而,对于影像人员来说,仅具备医学知识是不够的,还需要具备有关计算机数学知识等相关理论作为保障。我们从医学影像的显示器上可以准确看出每条线,每幅图片和动态图,然而对于计算机来说,会将这些图像作为数据,进行可操作二进制数,不同数据分别代表了不同的生物信息,呈现给我们不同的视觉,也就是构成了不同的数字图像。在医院中常见的CT影像是一种体层像,首先需要通过一定的方法收集体层投影数据,然后通过数学算法比如滤波反投影法,对所收集到的数据进行分析处理,最终获得二维数据分布,根据这些分布图能够转换为灰度分布,进而能够得到CT像。由于在二维数据中相对应的每个数据都为整数,因此,在CT图像的灰度分布中,每一个区域代表一个灰标,也被称为是像素,像素矩阵构成了CT像,因此CT像也属于是一种数字图像。
4讨论
影像处理范文第2篇
关键词:SPOT5;卫星影像;DOM
中图分类号:P283文献标识码: A
引言
数字正射影像图( DOM)作为数字测绘产品“4D ”产品的重要组成部分,具有精度高、信息丰富、直观真实等优点,可从中提取各种类别的海量地理信息、自然资源信息和社会经济发展信息,为资源调查、环境监测、城市现代化建设、防治灾害和公共城市建设规划等各种调查和管理等提供可靠依据; 还可从中提取和派生新的信息,实现地图的修测更新,作为基础地理信息数据生产和更新的数据源。数字正射影像图( DOM)的制作除常规的航空摄影资料外,高分辨率的卫星遥感数据也成为一种重要的数据来源。如美国 SpaceIm age 公司提供的地面分辨率为 1m 的 IKONOS-l全色遥感卫星影像和 4m 多光谱遥感影像,DigitalGlobe 公司的 4uickBird 的 0.65m 全色和 2.4m 多光谱遥感影像; 法国 SPOT-5 卫星获取的 5m 分辨率的全色遥感影像。
1、Spot5卫星影像的特点
Spot5卫星是由法国于2002年5月发射升空的。其传感器类型为HRG,幅宽为60km,其轨道循环周期26d。为了保证卫星在1个周期内将全球完整覆盖1次,Spot5采用了“双垂直”的视场配置模式,2个高分辨率成像装置沿地面轨迹获取两条数据带,这个宽度大于相邻两地面轨迹间的距离。分辨率短波红外影像:20m;多光谱影像(绿、红和近红外):10m;全色影像:5m;超模式全色影像:2.5m。波谱范围为P:0.48~0.71μm;B1:0.50~0.59μm;B2:0.61~0.68μm;B3:0.78~0.89μm。
2、DOM 制作流程
从卫星影像制作 DOM 的流程分成不同环节,每个环节的处理效果会影响最后的制作效果。
2.1、数字影像质量评价
数字影像质量评价是一项很有意义但又较难解决的研究课题。一般评价融合图像的质量是以视觉分析为主,并结合定量分析进行的。常用于衡量信息量的统计参数有均值、方差、熵、联合熵、平均梯度、偏差指数、相关系数等。在实际工作中可依据不同的地域内容、不同的应用目标以及不同的数据源,选择适当的遥感数据融合处理方法,在提高空间分辨率的同时,最大限度的减小光谱扭曲,从而有利于解译分类。
2.2、影像镶嵌和裁切
如果工作区跨多景图像,还必须进行图像镶嵌,才能获取整体图像。镶嵌时,除了对各景图像各自进行几何校正外,还需要在接边上进行局部的高精度几何配准处理,并且使用直方图匹配的方法对重叠区内的色调进行匀色处理。当接边线选择好并完成了拼接后,还对接边线两侧作进一步的局部平滑处理。
2.3、像元重采样
为了提高 SPOT5 影像的 GCP 定位精度以及影像的视觉效果,采用不同内插算法进行影像重采样,其效果是不一样的。经试验,将全色影像像元大小重采样成 2 米和 1 米;将多光谱影像像元大小重采样为 5 米和 2 米。内插算法包括最临近、双线性和立方卷积三种。经过视觉效果检验,双线性内插算法得到的像元大小为 1 米的全色影像与像元大小为 2 米的多光谱影像的视觉效果最好,道路、房屋等线性地物的边缘更加清晰,形状更加明显。有利于提高影像的解译程度。多光谱影像也有类似的情况。2 米影像的视觉效果最好,与 5 米和 10 米影像相比,各种地类的边缘更加清晰,形状更加清楚,并且在随后的融合过程中,2 米多光谱与 10 米多光谱影像相比,其融合效果也有一定的提高,主要表现在多光谱的混合像元引起的光谱扩散现象在一定程度上有所压制,从而使影像的质量有所提高。内插算法中,最临近方法容易产生错位现象,因此并不适合采用。双线性和立方卷积影像在视觉上相差无几,为减少计算量,建议采用双线性算法进行内插。
2.4、影像的几何配准
为了得到既具有丰富光谱信息又具有高分辨率的遥感影像, 需要对 SPOT5 多光谱影像与全色波段影像进行影像融合,而影像融合的首要条件就是不同影像间精确的几何配准。在遥感影像处理系统( ERDAS 系统)中进行二者的高精度几何配准。GCP 的选择是几何培准的最重要问题,其选择依据是要均匀分布在整个校正区域、特征要固定而明显、数量要足够。GCP对于几何精校正精度的影响主要表现在 GCP 的数量、分布和本省的定位精度。几何纠正数学模型的不同,影响也不同, 采用二阶二元多项式纠正模型, 适当增加 GCP 的数量可以提高几何培准精度。用双线性内插法对多光谱影像进行重采样,得到与全色影像高精度配准的多光谱影像。
3、DOM 制作中影像上薄云去除方法
国家西部 1∶50 000 无图区测图工程中,大部分区域 DOM 采用遥感卫星影像制作。如果原始影像上有薄云,地面纹理基本可以读出,这种情况通过增加地面纹理清晰度、去除影像上的白色羽化,可以达到清晰的影像信息。
而当影像之中有厚云阴影。这种影像阴影区色彩偏暗,但地面纹理可见。通过调整影像的明暗度和色彩,使云雾阴影部分恢复自然色彩。
4、DOM 制作中影像上厚云处理方法
西部测图工程中,有的区域被较厚云雾覆盖,无法提取地面纹理,制作 DOM 时一般采用已有相应影像替换。对云雾替换区域的影像我们采用以下方法:
4.1、用相邻同种分辨率 2.5 m HRG 数据源替换,因二者分辨率相同,只需在影像融合时做好周边透明处理。
4.2、用相应立体条带同轨直下视 5 m 分辨率 HRG数据源替换。用此三立体条带 HRG 5 m 分辨率影像与多光谱影像融合、分辨率转换、影像替换、影像纹理处理。
4.3、用 10 m×5 m 分辨率 HRS 立体条带数据源替换,要注意的是,用该数据源时要做影像纹理变换,具体做法是将 HRS 条带 10 m 分辨率方向进行隔行纹理增加,利用 DPGRID 将立体条带数据处理为 5 m×5 m 分辨率全色正射影像,再与多光谱影像融合、影像替换、影像色彩调整。
HRG 2.5 m 分辨率全色影像上有厚云,影像融合后做分辨率转换,进行影像替换。虽然替换的影像分辨率保持了一致,但实际上影像上的纹理差异较大,与周围影像很难融为一体,分辨率一致只保证了影像大小的一致,影像纹理还需在Photoshop 里做进一步处理。具体做法是将被替换影像中的白云部分选中做色彩亮度降低,将云雾阴影部分选中做色彩亮度增强,使得云雾部分的影像色调基本保持一致;其次,将替换的影像做不透明处理,百分比按照影像的具体情况确定,有时 50%的不透明度刚好,有时可能是 70%或 40%,不透明度的选择以能够盖住下层云雾为好;接下来将处理好的替换部分影像边沿做羽化切割,再进行色调调整,将其融入到被替换影像中。
5、结语
上述方法制作的 DOM 平面精度检测符合规范标准,为调绘及影像解译人员提供方便,提高内业地物采集速度、质量及该项工作效率,目前为本单位用 SPOT5 遥感影像制作 DOM 的主要方法,在生产中有较高的实用价值。
参考文献:
[1]宋燕,闵晓凤,刘秀梅.利用SPOT5HRS条带影像制作DEM及等高线的技术方法[J].测绘技术装备,2008,01:43-45.
影像处理范文第3篇
影像融合是大势所趋
“影像融合”是近来被国内医学影像界提及频率很高的一个词,7月19日,由中国医科院主办的“首届医学影像高峰论坛”在北京举行,该会议的主题即为“融合共赢”。复旦大学副校长、中华医学会放射学分会主任委员冯晓源在会议间隙接受《e医疗》专访时说:“影像医学必然要以影像为根本,但这个‘影像’不是CT、核磁等单种技术的图像,而是多种影像的融合。从目前以形态(解剖)为基础的诊断向功能诊断、分子水平诊断的发展过程中,影像融合是必经的阶段。”同样的内容,他在2012年的中华医学会放射学分会年会上也提到过。
中国医科大学附属盛京医院院长郭启勇认为,以内、外科为代表的临床学科对影像检查的依赖性日益增加;以产前诊断为代表的特殊学科对影像检查的需求认识不断加深;综合影像诊断的重要性被临床广泛认知……知识附加值在影像诊断中将日益显现。
诚然,影像对于临床有着非常重要的作用,而影像医学的发展也必须围绕临床进行,因为作为“医技科室”的影像科,其终极目的必然是为“医”提供服务。
影像融合概念的提出,与医学的发展方向有着直接的关系。未来医学的发展将朝着以预测(Predictive)、预防(Preventive)、个性化(Personalized)和参与性(Participatory)为特征的P4医学方向进行,这正在逐渐成为医学界的共识。冯晓源认为,个性化医学将是新医学模式的核心之一,而影像医学检查技术,将可能是个性化医学的核心和基础。改变诊断模式,适应新医学发展的要求,不仅能改变影像医学式微的趋势,更能让其走向具有广阔前景的康庄大道。影像融合,是大势所趋。
随着科学技术的发展,越来越多的影像检查设备开始提供标准DICOM格式的影像数据,从技术上解决了影像融合的问题。而影像学科因细分而导致的碎片化,却在阻碍着影像融合的进行。中国影像医学奠基人之一、中国工程院院士刘玉清教授一直提倡“大影像”,他呼吁所有的影像部门一起工作,把基于不同成像原理组成的图像放在一起,并在此基础上提取有用的信息进行融合。冯晓源认为,影像的融合更应该是学术上的融合,是各学科知识点在融合的图像上的呈现。他说:“影像医学应该从原来提供单纯的影像学信息――主要是形态学信息――向提供生物学信息进行转变。”
事实上,影像融合现在已经不仅仅只是影像医学的愿景,有些医院已经开始了相应的实践,中国医科大学附属盛京医院就是其中的一个先行者。目前,该院已经尝试将不同学科领域(如化学、计算机、生物工程)的人才引入影像学科,企图打造一个全新的融合影像学科。
三维重建与PACS
根据医学图像所提供的信息,可将图像分为解剖结构图像(CT、MRI、B超等)和功能图像(SPECT、PET等)。解剖图像以较高的分辨率提供了脏器的解剖形态信息,但无法反映脏器的功能情况;功能图像分辨率较差,无法提供脏器或病灶的解剖细节,但它提供的脏器功能代谢信息是解剖图像所不能替代的。由于成像原理的不同所造成的图像信息局限性,使单独使用某一类图像的效果并不理想。这就需要对影像进行包括图像融合在内的图像后处理,三维重建是其中的内容之一。
所谓图像后处理,是指对获取的图像进行处理、使之满足各种需要的一系列技术的总称,最典型的技术包括图像分割和三维重建。通过一定的图像分割操作,切除任意不感兴趣的数据集,仅保留要处理的部分。分割技术可以使医生排除无关图像的干扰,看得更清楚,自然得出的诊断结论也更准确。而三维重建则是根据一系列二维的医学图像,经过多重处理,提取不同物体的边界数据,得出物体的三维模型,并允许对模型进行显示、旋转、缩放等操作。三维模型的重构可以为医生提供多角度立体的视角,从而使医生方便、快捷地对病灶进行定量的分析和处理,提高诊疗水平和效率。
三维影像的获取有两种方式:设备获取和PACS获取,设备获取可分为CT、MR等设备自带工作站和专业的三维影像工作站。专业三维影像工作站功能强大,能够提供信息更丰富、品质更精细的三维图像,而另外两种途径获取的图像品质相对较差。
PACS作为一个获取、存储并提供调阅医学图像的综合应用平台,其看图模块能对图像进行各种二维处理,而三维处理功能并不是所有医疗信息化厂家提供的PACS产品都支持的功能。PACS可以集成三维后处理功能,这样就可以进行影像的三维重建。PACS是一个数字运行的平台,是一个更大的概念,重建后的三维影像可以通过PACS进行存储、传输和查看。
融合了三维影像后处理功能的PACS,以所获取的DICOM图像为基础,对其进行重建、分割等处理操作,使医生可以更全面地观察医学影像,从而扩充了PACS看图模块的功能,取得了更理想的诊疗效果。把图像分割和三维重建技术结合起来使用,将最大限度地发挥后处理功能。诊断医生通过医学PACS系统得到患者的图像信息,在看图模块中进行简单的处理之后,如果发现还不足以做出确切的诊断,就可以利用三维影像后处理系统先重建出患者检查部位的三维立体模型,分割操作可以去除不感兴趣的干扰部分,各种旋转平移操作可以给医生更多的信息,最终做出合理的诊断。
综上所述,三维影像后处理系统处理的影像来源主要是PACS,各方面都要得到PACS的良好支持,既可以成为PACS的辅助模块,也可以单独成为一个独立的软件系统。
三维重建的医学应用
三维影像的应用主要体现在临床上,比如在做手术时查看病灶和周围血管及组织之间的关系,帮助临床医生进行手术计划的制订。《中国放射学杂志》编辑部主任高宏说:“3D影像技术在疾病的诊断、治疗和基础研究方面有着广泛的应用,在肿瘤疾病上的应用更为广泛,很多肿瘤的介入治疗和放射治疗都是通过三维成像引导来完成治疗计划的制订的。”
除了高宏提到的肿瘤疾病的治疗,三维影像在骨科、心血管等临床外科的应用也较普遍。北京大学第一医院泌尿外科要求每个肾癌病例都要进行三维重建,有着一套严格的对肾癌进行三维重建的要求:重建哪几个解剖的位置、重建哪些血管和肿瘤的关系等等。该院呼吸内科开创了用呼吸内镜把肺气肿病变切除的手术,该院影像科主任王霄英评价:“内科把外科的活干了,开拓了一个全新的领域。”
不仅仅是在临床,目前三维重建在诊断、教学和科研方面的应用也已经初具规模。郭佑民认为,三维影像在放射科的应用会越来越多,“对于放射科医师而言,除了观察断面图像之外,结合3D技术可以为临床提供更多更丰富的诊断依据。”他说。
并不是所有的影像从业者都认可郭佑民的观点,在采访中部分放射科主任认为,作为诊断工具来讲,三维影像对放射科的帮助并不大。放射科医生一直都是通过二维影像做诊断,经过多年的专业训练之后,他们已经可以透过二维影像在脑海中重建三维结构,此外,三维影像并没有提供更多与诊断相关的信息。倒是对临床医生而言,三维影像更能帮到他们。
青岛大学医学院附属医院副院长董则在科研方面进行了探索,国家“十二五”科技支撑计划课题“小儿肝脏肿瘤手术治疗临床决策系统开发” 就是由他领衔的。董和他的团队希望在国际上首次将中国各年龄阶段儿童和成人肝脏进行数字化虚拟测量,建立中国儿童肝脏数据库和小儿肝脏肿瘤立体模拟手术系统。
在教学方面,郭佑民认为3D影像与2D影像相结合,有利于学生对影像学结构图像的理解和应用。“因为医学生从学习人体解剖课程开始,就逐步地建立了人体组织和结构的空间概念,而对横断面的2D图像理解不够透彻。借助3D图像可以更好地对照和理解每一幅2D图像与3D图像的关系,为后续的学习奠定基础。”他说。
三维重建的发展方向
三维重建在医学上的应用已经较为普遍,其重要性正在越来越多地得到认可。如何充分利用三维影像的优势,更好地为医学服务,学术、临床及产业界都在进行着积极的探索。
影像引导的放射治疗
影像引导的放射治疗(IGRT)是一种前沿技术,通过放疗前以加速器自带的CT进行扫描,采集并重建三维图像,与治疗计划图像配准后再实施治疗。这样可以克服因治疗摆位和肿瘤位置移动所造成的误差,确保在精确照射肿瘤的同时,将对其周围正常组织的损伤降到最低限度,全方位提高效果。它在三维放疗技术的基础上加入了时序的概念,可以说是一种四维技术。
IGRT可从定位、计划到治疗实施和验证等方面创造各种解决方案。它充分考虑了解剖组织在治疗过程中的运动和分次治疗间的位移误差,如呼吸运动、小肠蠕动、膀胱充盈、胸腹水、日常摆位误差、肿瘤增大/缩小等引起放疗剂量分布的变化和对治疗计划的影响等方面的情况,在患者进行治疗前和治疗中利用各种先进的影像设备对肿瘤及正常器官进行实时监控,并能根据器官位置的变化调整治疗条件,使照射野紧紧“追随”靶区,做到真正意义上的精确治疗。
高级影像中心
四川大学附属华西医院目前正在计划建立AVC(Advanced Visualization Centre,高级影像中心,也称3D中心或三维中心)。
西门子大中华区影像和知识管理总经理王峻介绍,AVC模式是以临床需求为中心而设计的影像信息系统,其所有的活动都是围绕着临床的某些诊疗需求而设计的。他说:“AVC改变了传统影像科的工作模式,使其更贴近临床科室的需求。AVC把大量之前只有在放射科才能访问到的高级图像处理软件的浏览权限向临床科室开放,使临床医生大为获益。AVC模式还将改变放射科的报告不受临床科室重视的尴尬状态,使得放射科的检查、处理和报告可以全面地为临床治疗服务,并为临床医生提供大量其需要的辅助信息。相信AVC能为医院诊断和治疗这两个重要的医疗行为找到更好的合作模式。”
华西医院放射科高级工程师王跃介绍,AVC所特有的各种结构化报告,能协助放射科在临床科室的亚专业和放射科的亚专业之间形成对接,这种一对一的沟通和协作,可以为临床中的不同疾病和亚专业提供更准确而有用的个性化、专业化报告,在提高放射科医生诊断报告价值的同时,也能提高放射科报告的利用率和实用性。
王跃说:“AVC的建设不仅能够大大加强放射科与临床科室的互动,使得临床更加需要放射科的工作以便更好地为患者服务,而且能够提升放射科自身的实力和水平。AVC代表了未来的放射科-临床科室工作模式,完全可以称为诊疗模式的一次革命。”
3D医学打印
据《健康报》今年7月报道,北京大学第三医院骨科刘忠军带领的团队在脊柱及关节外科领域研发出了几十个3D打印脊柱外科植入物,其中包括颈椎椎间融合器 、颈椎人工椎体及人工髋关节在内的三个产品已经进入了临床观察阶段。报道称,已经有近40位颈椎病患者和髋关节病患者在签署知情同意之后,植入了3D打印出来的骨骼。
3D打印技术,是以计算机三维设计模型为蓝本,通过软件分层离散和数控成型系统,利用激光束、热熔喷嘴等方式将金属粉末、陶瓷粉末、塑料、细胞组织等特殊材料进行逐层堆积黏结,最终叠加成型,制造出实体产品。3D打印技术又称“增材制造”,长期以来被应用于制造珠宝、电子产品和汽车部件模型,然而如今的工业3D打印机也在造福医疗领域,它们已经可以定制人体肝脏和肾脏的模型,而科学家们也正在研究如何用3D打印机打印胚胎干细胞和活体组织,目标是制造出能够直接移植到受体者身上的人体部位,先进的3D打印机目前已经开始走进医院。
医疗行业(尤其是修复性医学领域)存在大量的定制化需求,难以进行标准化、大批量生产,而这恰是3D打印技术的优势所在。目前,3D打印技术在助听器材制造、牙齿矫正与修复、假肢制造等领域已经得到了成功应用,且应用已经相对比较成熟。
但是,要想走进全球各地成千上万的医院手术室,3D打印技术还面临许多障碍:第一,用于制造器官模型的3D打印机售价在25万美元至50万美元,小医院难以负担;第二,大多数医生不会使用3D打印机,所以医院还需要技术人员来操作3D打印机并把医疗图像转换为可以打印的3D数据。
影像处理范文第4篇
1.1遥感影像基本定义及介绍
遥感技术自诞生之日起,应用逐步延伸至我们日常生活的每个角落。1943年德国开始利用航空相片制作各种比例尺的影像地图。1945年前后美国开始产生影像地图,我国在20世界70年代开始研制影像地图。[1]在日常工作中,我们常常接触到遥感影像,谈及遥感技术及其应用。那么具体是指什么呢?所谓遥感影像,是指纪录各种地物电磁波数据而生成的各种格式的影像数据,在遥感中主要是指航空影像和卫星影像。目前遥感影像图无论在农业的土地资源调查,农作物生长状况及其生态环境的监测,还是在林业的森林资源调查,监测森林病虫害、沙漠化或是在海洋资源的开发与利用,海洋环境污染监测都有着非常重要的应用。[2]
1.2遥感影像的四个基本特征
遥感影像有其四个基本的影像特征:空间分辨率、光谱分辨率、辐射分辨率、时间分辨率。通常意义上,我们平时最多谈及精度的问题,常常是指空间分辨率(SpatialResolution),又称地面分辨率。后者是针对地面而言,指可以识别的最小地面距离或最小目标物的大小。前者是针对遥感器或图像而言的,指图像上能够详细区分的最小单元的尺寸或大小,或指遥感器区分两个目标的最小角度或线性距离的度量。它们均反映对两个非常靠近的目标物的识别、区分能力,有时也称分辨力或解像力。光谱分辨率(SpectralResolution)指遥感器接受目标辐射时能分辨的最小波长间隔。间隔越小,分辨率越高。所选用的波段数量的多少、各波段的波长位置、及波长间隔的大小,这三个因素共同决定光谱分辨率。光谱分辨率越高,专题研究的针对性越强,对物体的识别精度越高,遥感应用分析的效果也就越好。但是,面对大量多波段信息以及它所提供的这些微小的差异,人们要直接地将它们与地物特征联系起来,综合解译是比较困准的,而多波段的数据分析,可以改善识别和提取信息特征的概率和精度。辐射分辨率(RadiantResolution)指探测器的灵敏度——遥感器感测元件在接收光谱信号时能分辨的最小辐射度差,或指对两个不同辐射源的辐射量的分辨能力。一般用灰度的分级数来表示,即最暗——最亮灰度值(亮度值)间分级的数目——量化级数。它对于目标识别是一个很有意义的元素。时间分辨率(TemporalResolution)是关于遥感影像间隔时间的一项性能指标。遥感探测器按一定的时间周期重复采集数据,这种重复周期,又称回归周期。它是由飞行器的轨道高度、轨道倾角、运行周期、轨道间隔、偏栘系数等参数所决定。这种重复观测的最小时间间隔称为时间分辨率。
2常用遥感影像
2.1一般遥感影像
目前,常用的中分辨率资源卫星有LandsateTM5、中巴资源卫星;以及常用的高空间分辨率的Spot5、Rapideye、Alos、QuickBird、WorldviewⅠ、WorldviewⅡ等。高分辨率遥感影像图信息丰富、成本低、可读性和可量测性强、客观真实的反映地理空间状况,充分表现出遥感影像和地图的双重优势,具有广阔的发展前景。[3]LandsateTM5、中巴资源卫星对大区域范围内的资源变化、国土资源变化、自然或人为灾害、环境污染、矿藏勘探有着较大的优势,但是因为分辨率低,所以在林业遥感判读中误判率相较于其他几种高精度遥感影像高,适合大面积地区的使用,譬如内蒙草原的退化变化以及荒漠化变化的监测等。其中ALOS因卫星故障已经于2011年4月开始较少使用。QuickBird虽然精度较高,但它一般对城区影像的覆盖较多较集中,对山区覆盖较少,而且存档数据很少,需要提前预定。不仅如此,QuickBird数据费用较高,综合以上原因,QuickBird数据一般很难大范围使用,所以在林业项目中使用较少。
2.2前沿遥感影像
WorldviewⅠ、WorldviewⅡ均为Digitalglobe公司的商业成像卫星系统,被认为是全球分辨率最高、响应最敏捷的商业成像卫星。这两颗卫星还将具备现代化的地理定位精度能力和极佳的响应能力,能够快速瞄准要拍摄的目标和有效地进行同轨立体成像。其中WorldviewⅠ为0.5米分辨率。相较于WorldviewⅠ,WorldviewⅡ载有多光谱遥感器不仅将具有4个业内标准谱段(红、绿、蓝、近红外),还将包括四个额外谱段(海岸、黄、红边和近红外Ⅱ),能够提供0.4米全色图像和1.8米分辨率的多光谱图像。需要特别一提的是,WorldviewⅡ提供的四个额外谱段(海岸、黄、红边和近红外Ⅱ)可进行新的彩色波段分析:(1)海岸波段,这个波段支持植物鉴定和分析,也支持基于叶绿素和渗水的规格参数表的深海探测研究。由于该波段经常受到大气散射的影响,已经应用于大气层纠正技术。(2)黄色波段,过去经常被说成是yellow-ness特征指标,是重要的植物应用波段。该波段将被作为辅助纠正真色度的波段,以符合人类视觉的欣赏习惯。(3)红色边缘波段,辅助分析有关植物生长情况,可以直接反映出植物健康状况有关信息。(4)近红外Ⅱ波段,这个波段部分重叠在NIR1波段上,但较少受到大气层的影响。该波段支持植物分析和单位面积内生物数量的研究。林业工作对遥感影像的植被信息较为关注,以上提及的四个额外谱段能提供较多的植被信息。国外相关机构已经将四个特色谱段应用于前沿科学研究,譬如生物量遥感估测应用等等。美中不足的是,相较于其他类型的遥感影像,WorldviewⅠ,WorldviewⅡ影像费用较高,在质量和技术上领先但价格上不占优势,不易于大范围的使用。
2.3林业工作中应用较多遥感影像
除去以上谈及的几种类型的遥感影像,在工作中较多使用到的是Spot5和Rapideye这2种遥感影像。Spot5是由法国发射的一颗卫星,常规提供2.5米全色影像和10米多光谱影像。SPOT5卫星影像的专业制图比例尺为1:25,000,概览成图比例尺极限为1:10,000。工作中,我们通常将2.5米全色影像与10米多光谱影像在正射纠正完后进行融合,生成2.5米空间精度的影像用于林业应用。Rapideye卫星为德国所有的商用卫星,主要性能优势:大范围覆盖、高重访率、高分辨率、5米的多光谱获取数据方式,省去了其他种类遥感影像需要全色影像与多光谱影像融合的步骤,这些优点整合在一起,让RapidEye拥有了空前的优势。RapidEye是第一颗提供“红边”波段的商业卫星,结合4个业内标准谱段(红、绿、蓝、近红外)适用于监测植被状况和检测生长异常情况,在林业领域应用中较为有利。
3遥感影像准备及处理过程
3.1遥感影像准备
每种遥感卫星对地面覆盖范围不同,轨道不同,重访周期不同,拍摄时间、角度不同等等原因,还常受天气影响。因此根据实际需要使用的日期,来查询各景遥感影像是一件颇费周章的工作,一般需要向影像公司提前预定。实际工作中往往要求前后两期遥感影像对比,前后两期遥感影像对时间上的要求较为
苛刻,因而这些工作往往经由熟悉遥感业务的高级技术人员执行。另外,遥感影像的购买、使用、存储需要考虑到保密工作,这一点也是需要谨慎对待。工作经验总结出Spot5、Rapideye有时因侧视角度过大原因,导致某些区域拉伸变形,尤其是高海拔山区部分;影像角度需要提前检查,侧视角度最佳保持在20以下。而较小侧视角可以保证邻近2景影像良好的接边,并能保证正射纠正后空间位置的准确性。 3.2遥感影像处理
3.2.1DOM及DEM数据准备通常,在条件良好的情况下,工作中使用1∶10000或更高精度的航片或是已经经过处理的高精度卫片作为DOM参考;但也可以使用的是1∶50000或1∶10000地形图作为参考。在实际工作中,我们往往会遇到DOM参考影像的空间分辨率不一致。在参考选用时,应该按照优先使用高精度DOM参考影像,然后再退而求其次的原则,保证校准的精度。一般地形图需要通过扫描形成DRG数据,在扫描图基础上进行逐公里网定位纠正处理,以达到精确的地理定位。DEM数据一般采用国家标准的1:50000DEM,或采用1∶10000、1∶50000矢量数据生成。DEM覆盖范围要大于遥感影像覆盖范围,这样才能保证遥感影像的有效纠正。
影像处理范文第5篇
关键词:计算机断层扫描;螺旋CT;伪影;图像处理
一般将被扫描物体并不存在,而出现于CT图像上的各种假性阴影称为伪影。
常见伪影有:①运动伪影,见图1;②高对比伪影,见图2、图3;③射线硬化伪影,见图4、图5;④环形伪影,见图6、图7;⑤马赛克或阶梯样伪影,见图8。
1资料与方法
1.1一般资料 头部平扫45例,胸部增强扫描5例,腹部增强扫描5例,髋关节(均为钢板或髓内钉内固定术后)平扫及三维重建10例。
1.2方法 所有病例均采用东软CT-3000型扫描机,其中头颅轴位平扫描条件为层厚5 mm,120 KV,150 mA,2 s胸部扫描平扫+增强条件为层厚5 mm,120 Kv,150 mA,1.0 s,经肘部静脉高压注射安射力约100 mL,约25 s起扫;腹部平扫+增强条件为扫描层厚5 mm,120 Kv,175 mA,1.0 s,经肘部静脉高压注射安射力约100 mL,约45 s起扫;髋关节行CT扫描并三维重建,层厚5 mm,120 Kv,175 mA,1.0 s。
2结果
不同类型图像伪影病例,其中亨氏暗区45例,环形伪影27例,高对比伪影18例,运动伪影8例。具体部位及伪影类型,见表1。
3讨论
3.1不同伪影类型形成的常见原因分析
3.1.1运动伪影 常由患者移动或生理运动产生。本组13例中5例头颅患者均为外伤或饮酒后神志不清,不能配合检查,有反复移位造成大量弧形及不规则形伪影。3例胸部患者为不能完整闭气,产生两下肺模糊的呼吸伪影。5例腹部有胃肠蠕动及腹式呼吸形成的伪影,见图1。
3.1.2高对比伪影 常由患者体内高密度异物,主要为金属异物产生。本组8例中3例为未去除金属发夹,5例胸部增强扫描患者因心脏及大血管内造影剂浓度较高,10例髋关节因钢板髓内钉内固定术后,见图2、图3。
3.1.3射线硬化伪影 当连续谱能的X射线经过人体时,能量较低的X线优先被吸收,高能量X射线较易穿透,在射线传播过程中,平均能量变高,射线逐渐变硬,称之为线束硬化效应。射线硬化就相当于降低了物质的吸收密度,必然会影响CT图像的质量。
线束硬化会产生暗带和条状伪影,环形伪影两种类型的伪影。前者是指当X线球管沿着不同的方向对某一物体进行扫描时,在密度不均匀组织横断面图像上的两个致密结构之间,例如颅底岩骨间,见图4、图5。
由人体内相邻高密度组织间产生。本组45例均为头颅,且均出现于颅底岩骨间,因颅底岩骨组织两个致密结构间密度不均匀。
3.1.4环形伪影 因滤线器或探测器通道异常引起。本组27例均为头颅,因CT扫描机故障,见图6、图7。
3.1.5马赛克或阶梯样伪影 基于重建算法产生的伪影。本组1例为图像后处理采用内插算法时,对非同一平面的数据进行整合成为同一平面投影数据后,再进行图像重建,产生的较明显的马赛克样或边缘阶梯样伪影。
3.1.6球管老化后主要变现为定位片的横条状伪影,及断层或螺旋图片的噪声明显增大。
3.2临床常见部位伪影处理方法
3.2.1行头颈部CT检查,患者不配合时,可通过CT床板上头颅固定制动带加以固定,对外伤或醉酒患者CT扫描时可有效减少运动伪影发生频率。因机器故障产生环形伪影时,可应用同样条件,进行空气灵敏度矫正扫描,然后再进行头部轴位标准重建,可暂时消除图像上的环形伪影。对颅底部位采用5 mm以下薄层扫描,可明显减少亨氏暗区。
3.2.2行胸部CT检查时,对患者不能充分屏气的,可在检查前对患者进行呼吸屏气训练,同时可行分段扫描,一般分两段为宜,可有效减少运动伪影。对胸部增强扫描时,减少增厚,并增加扫描条件,可明显减少高对比伪影。
3.2.3腹盆部CT扫描时,较多见为肠蠕动产生的运动伪影,对无禁忌患者,检查前5 min内肌注654-2 10 mL,可基本消除肠蠕动伪影。
3.2.4关节部位扫描时,如有金属内固定,可减少扫描层厚,增加扫描条件,从而有效降低金属放射状伪影。
3.2.5所有部位检查前须去除检查部位可去除的金属异物,常见如发夹、义齿、胸罩、硬币、及钥匙等,可避免由体外异物引起的高对比伪影。
3.2.6临床需要图像后处理时,CT扫描应尽可能薄层扫描和薄层重建,最后采用合适的插值算法,可显著降低马赛克或阶梯伪影的形成。
综上所述,正确认识伪影产生的原因和表现形式,找到有效的解决方法,为获得优质的CT图像具有非常重要的实际意义。
参考文献:
[1]王绪,等.CT诊断学[M].上海:第二军医大学出版社.