功率因数(精选5篇)

  • 功率因数(精选5篇)已关闭评论
  • A+
所属分类:文学
摘要

功率因数是衡量企业供电系统电能利用程度及电气设备使用状况的一个具有代表性的重要指标之一,通常使用cosφ表示,我们可以用以下几项来介绍功率因数的重要性,及提高功率因数的方法。 1 有功功率和无功功率 企业的用电设备大部分都用电磁感应原理来工作的,…

功率因数是衡量企业供电系统电能利用程度及电气设备使用状况的一个具有代表性的重要指标之一,通常使用cosφ表示,我们可以用以下几项来介绍功率因数的重要性,及提高功率因数的方法。

1 有功功率和无功功率

企业的用电设备大部分都用电磁感应原理来工作的,比如:变压器、电焊机、电磁感应式电动机等等,它们都是靠电能转化成电磁能再转化为电能或机械能来实现的能量转换,这样,用电设备就必须从电网上吸收两种能量,一部分能量用于做功,即前边提到得机械能或热能,这部分能量大部分是为了满足生产和生活的需要,称为有功功率。另一部分能量用来产生交变磁场,它是变压器、电焊机或电感线圈形成能量转换和传输的介质,没有了磁场,就没有了传输能量的介质,从而使能量只能在电源或用电设备内部消耗,而不能对外传输,不能对外做功,这部分功率叫做无功功率。无功,顾名思义就是无用功,其实它并不是没有用,没有它,任何能量都只能自己消耗,不能传输,然而它确实在能量转换的过程中没有转换成其它能量,所以叫作无功功率。有功功率和无功功率都是电能运用所必须的,若有功功率不足,就不能满足用电负荷的需要,会将电网电压拉低,系统发电机的转速变慢,发电频率降低,影响用电质量,威胁发电厂和各用电设备的安全。若无功功率不足,系统电压也会降低,电流将会升高,电机过流过热,会导致用电设备绝缘破坏,甚至烧毁。

2 功率因数

功率因数是衡量企业供电系统电能利用程度及电气设备使用状况的一个具有代表性的重要指标之一,通常使用cosφ表示。一个供电设备的供电容量通常是用视在功率表示,字面意思就是我们所能看到的功率,即表见功率,但不是真实功率,它的真实功率是由视在功率和功率因数的乘积决定的。所以说功率因数是一个非常重要的供电指标,而视在功率是由有功功率的平方与无功功率的平方和,开跟号得到的。视在功率确定后,有功功率分量高就称为功率因数高,有功功率分量低就称为功率因数低,有功功率和无功功率都是靠发电机发出的,然而用电设备所需要的功率会因设备的感性和容性不同而不同,当用电设备是感性时,用电设备的电压会超前电流90°;当用电设备是容性时,电流超前电压90°,两个分量将在一条直线上,但方向相反,用电设备中感性的居多,所以这就需要一个容性的负荷进行无功补偿了。

3 有功功率和无功功率的三角关系

上述讲的有功功率和无功功率可以用直角三角形的关系来描述:三角形的两条直角边,一个表示有功功率,一个表示无功功率,它们的斜边就是视在功率,有功功率和视在功率之间的夹角就是功率因数角,功率因数角的余弦值就是功率因数。无功功率越少,功率因数角就越小,它的余弦值就越大,有功功率和视在功率就越接近,也就是说,能量的转换效率也就越高。这就提出了一个问题,怎样减少发电机的无功输出?或者说怎样减少感性负何的无功吸收?

4 提高功率因数的意义

由上述3可以看出,要使发电厂和供电所更有效利用资源进行电能的转换和传输,就必须合理的进行有功功率和无功功率的分配,在无功功率配置合理的情况下,尽量的多发有功,减少无功功率的输出。那就要提高用电设备的功率因数。当供电系统中输送的有功功率维持恒定的情况下,无功功率增大即功率因数的降低,就会引起:①系统中输送的总电流增大,使电气元件,如变压器、电抗器、导线等容量增大,从而扩大了企业投资;②由于无功功率增大,造成输电电流增大,从而也会增大供电设备的有功损耗;③因为系统中的总电流增大,所以电压损失增大,造成调压困难;④对发电机来说,转子温度升高,发电机达不到预期出力;⑤由于系统电流增大,系统电压降低,会造成其他设备不能正常出力。所以,我们必须提高供电系统的功率因数。

5 提高功率因数和无功补偿

企业 的感性负荷大部分是异步电动机,运行时要消耗一定的无功功率,使得电动机和输电线路的电流增大,如果给电动机增加就地补偿电容,不但可以使线路及配电装置的输送电流减小,而且还可以减少有功损耗,减少初期的投资容量。下面给出异步电动机的无功补偿 计算 公式,以供大家 参考 :

设补偿前电动机的无功功率为q1,补偿电容器后的无功功率为q2,则补偿电容器的无功功率为:

qc=q1-q2=p1(tanφ1-tanφ2)=

式中:p1、p2为电动机运行时输入/输出的有功功率,η为电动机运行时的效率,φ1、φ2为电容器补偿前后的功率因数角。

补偿前的功率因数:cosφ1=(cosφe)1/k ,式中:cosφe为电动机额定负载时的功率因数,可从产品目录中查得,k为电机定子电流负载率,k=i1/ie,其中i1为电机运行时的实测定子电流(a),ie为电机的额定电流(a)。

补偿后的功率因数一般是0.95左右,如果再高,投入的成本太大,不 经济 ,确定了所需补偿的无功功率qc之后,那么补偿电容量c= 式中:f为电源频率(hz),ue为电机额定电压(v),qc为电容补偿的无功功率(var)。

注意:个别补偿的电容容量应根据电动机的功率、负载率及电网情况适当考虑,避免过补偿或欠补偿状态的出现。

6 补偿方式

工业 企业中常用的电容器补偿方式大概有三种:集中补偿、分组补偿和单个补偿。企业电力系统的补偿方式的选择,要视企业的具体情况而定。比如:从无功就地平衡来说,单个补偿的效果最好(单个补偿应用于大容量、长期运行、无功功率需要较大的设备,或者输电线路较长的设备,不便于实现分组补偿的场合,这种方式可以减少配线电流,导线截面,配电设备的容量),不论采取什么样的补偿方式,补偿电容必须选择适当,而这一切都是为了提高电力系统的功率因数。

7结束语

根据功率因数进行的无功补偿可以有效的提高设备的利用效率,减小了企业的初期投资,对企业供用电的稳定性有着深远的意义。

功率因数范文第2篇

【关键词】功率因数;有功功率;无功功率

【中图分类号】TF0【文献标识码】A【文章编号】2095-3089(2012)12-0137-01

引言

近年来节能工作越来越成为人们关注的焦点,有效合理的使用能源已成为实现能源的综合利用、促进企业发展、提高企业经济增长的质量和效益的有效途径。通过合理配置无功功率补偿设备,以提高系统的功率因数,从而达到节约电能,降低损耗的目的。对电网和电力用户来说,提高功率因数,减少无功电能损耗,对节能降耗具有十分重要的意义。

1功率因数的概述

在交流电路中,电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S。

2影响功率因数的主要因素

(1)异步电动机和电力变压器是耗用无功功率的主要设备。

(2)供电电压超出规定范围也会对功率因数造成很大的影响。

(3)电网频率的波动也会对异步电机和变压器的磁化无功功率造成一定的影响。

3提高功率因数的方法

3.1合理选择和使用电气设备:异步电动机和变压器是电网中占用无功功率最多的电气设备。电网的总无功功率约70%用于异步电动机,10%~25%用于变压器。异步电动机的功率因数和效率都不是一个固定不变的数值,它随着电动机的负荷在较大范围内变化。负荷率约在80%左右时,电动机的功率因数和效率最高。低于80%时,电动机的功率因数就会下降;负荷率低于40%时,功率因数和效率将急剧下降,这时电动机做功不大,耗费无功功率和有功功率很多,造成电力的浪费,所以,我们把大电机小负载现象称为“大马拉小车”。为了合理配置电气设备,消除“大马拉小车”的现象,目前国家已在有关节能政策中明确规定,电动机正常使用负荷率低于40%和变压器低于30%时限期调整或更换,否则不得继续使用。

3.2改变电动机接线降压运行:消除“大马拉小车”现象,采用换小电动机的办法,使用起来经常遇到一些困难,如没有合适容量的电动机或更换后难于安装等等。这时采用改变电动机定子接线方式,由三角形改为星形降压运行,能使大电机变成小电机,起到与换用小电机的相同作用,这种方法适用于空载和轻载起动的场合,如金属切割机床中的车床等,国内外已广泛采用,为了适应负荷变化,把星形—三角形接线改为自动转换形式,即轻载时接成星形,重载时自动接为三角形,使电动机既能满足负载需要,又能节电。这种方法只限于额定接线方式为三角形的电动机使用。由三角形改为星形,定子每相绕组电压下降为原来的13,容量为原来的40%左右。

3.3合理安排和调整工艺流程:对于异步电动机和各类弧焊变压器的空载运行应加以限制。我们把电动机不做功只空转叫做“跑空车”。因为,异步电动机空载时取用的无功功率等于满载时的60%—80%,如果有大量电动机“跑空车”,这个部门的平均功率因数一定会很低。但是“跑空车”现象到处可见,例如车床加工零件过程中,经常进行退刀、测量、调整和更换零件等操作,这些操作占整个作业时间的比例很大,高者可达50%左右,电能浪费很大,为此,对于空载运行时间较长的设备要加以限制。

3.4并联补偿电容:实际中可以使用电路电容器或调相机,一般多采用电力电容器补偿无功,即:在感性负载上并联电容器。以下为理论解释:在感性负载上并联电容器的方法可用电容器的无功功率来补偿感性负载的无功功率,从而减少甚至消除感性负载与电源之间原有的能量交换。并联电容器的主要缺点是只能成组投切,以致不能平滑调节其无功功率。但将它与同步电动机或SVC实行联合补偿则可达到较理想的调节效果。它的另一缺点是其输出无功随安装母线电压降低而成平方的减少,这对系统稳定性显然是不利的。

3.5并联电抗器:并联电抗器也是一种重要的无功补偿装置。在感性无功补偿设备中,其造价较低,应优先选用。在超高压电网中,线路空载或轻载时大量充电功率过剩,采用并联电抗器补偿是必不可少的。这一般可以通过采用高压和低压并联电抗器适当配合的补偿方式实现。在长距离输电线路上,高压电抗器具有限制过电压、分层平衡无功、有利于使用单相重合闸和提高系统稳定性的综合功能。低压电抗器的主要特点是易于投切,主要用于运行方式变化中无功平衡和电压调整。

3.6串联电容器:在超高压系统中使用串联电容补偿是不简单的,这是由其本身以及与系统间的相互作用的复杂性所决定的。这些问题包括有布置与接入方式的选择、电容器保护、线路保护配置、可能在某些运行方式下引起发电机的自磁、自发振荡以及次同步谐振等等。近年来在电容器保护装置的设计以及开发防止次同步谐振的措施等方面不断取得的进展,在维持串联电容器使用折增长速度方面已经起了重要作用。

参考文献

[1]邱关源.电路(第四版)[M].北京:高等教育出版社,1999

[2]郭木森,黄元梅,黄经武.电工学[M].北京:高等教育出版社,2001

功率因数范文第3篇

【关键词】功率因数;节约电能;供电质量

功率因数是指电力网中线路的视在功率供给有功功率的消耗所占百分数。在电力网的运行中,我们所希望的是功率因数越大越好,如能做到这一点,则电路中的视在功率将大部分用来供给有功功率,以减少无功功率的消耗。用户功率因数的高低,对于电力系统发、供、用电设备的充分利用,有着显著的影响。适当提高用户的功率因数,不但可以充分地发挥发、供电设备的生产能力、减少线路损失、改善电压质量,而且可以提高用户用电设备的工作效率和为用户本身节约电能。因此,对于全国广大供电企业、特别是对现阶段全国性的一些改造后的农村电网来说,若能有效地搞好低压补偿,不但可以减轻上一级电网补偿的压力,改善提高用户功率因数,而且能够有效地降低电能损失,减少用户电费。其社会效益及经济效益都会是非常显著的。

一、影响功率因数的主要因素

首先我们来了解功率因数产生的主要原因。功率因数的产生主要是因为交流用电设备在其工作过程中,除消耗有功功率外,还需要无功功率。当有功功率P有一定时,如减少无功功率P无,则功率因数便能够提高。在极端情况下,当P无=0时,则其功率因素=1。因此提高功率因数问题的实质就是减少用电设备的无功功率需要量。影响功率因素主要是下面几个方面。

(一)异步电动机和电力变压器是耗用无功功率的主要设备

异步电动机的定子与转子间的气隙是决定异步电动机需要较多无功的主要因素。而异步电动机所耗用的无功功率是由其空载时的无功功率和一定负载下无功功率增加值两部分所组成的。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。变压器消耗无功的主要成份是它的空载无功功率,它和负载率的大小无关。因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长其处于低负载运行状态。

(二)供电电压超出规定范围也会对功率因数造成很大的影响

当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长得很快,据有关资料统计,当供电电压为额定值的110%时,一般工厂的无功将增加35%左右。当供电电压低于额定值时,无功功率也相应减少而使它们的功率因数有所提高。但供电电压降低会影响电气设备的正常工作。所以,应当采取措施使电力系统的供电电压尽可能保持稳定。

(三)电网频率的波动也会对异步电机和变压器的磁化无功功率造成一定的影响

我们知道了影响电力系统功率因数的一些主要因素,因此我们要寻求一些行之有效的、能够使低压电力网功率因数提高的一些实用方法,使低压网能够实现无功的就地平衡,达到降损节能的效果。

二、低压网无功补偿的一般方法

低压无功补偿我们通常采用的方法主要有三种:随机补偿、随器补偿、跟踪补偿。下面简单介绍这三种补偿方式的适用范围及使用该种补偿方式的优缺点。

1.随机补偿

随机补偿就是将低压电容器组与电动机并接,通过控制、保护装置与电机,同时投切。随机补偿适用于补偿电动机的无功消耗,以补偿磁无功为主,此种方式可较好地限制农网无功峰荷。

随机补偿的优点是:用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,而且不需频繁调整补偿容量。具有投资少、占位小、安装容易、配置方便灵活、维护简单、事故率低等特点。

2.随器补偿

随器补偿是指将低压电容器通过低压保险接在配电变压器二次侧,以补偿配电变压器空载无功的补偿方式。配变在轻载或空载时的无功负荷主要是变压器的空载励磁无功,配变空载无功是农网无功负荷的主要部分,对于轻负载的配变而言,这部分损耗占供电量的比例很大,从而导致电费单价的增加,不利于电费的同网同价。

随器补偿的优点是:接线简单、维护管理方便、能有效地补偿配变空载无功,限制农网无功基荷,使该部分无功就地平衡,从而提高配变利用率,降低无功网损,具有较高的经济性,是目前补偿无功最有效的手段之一。

3.跟踪补偿

跟踪补偿是指以无功补偿投切装置作为控制保护装置,将低压电容器组补偿在大用户0.4kv母线上的补偿方式。适用于100kVA以上的专用配变用户,可以替代随机、随器两种补偿方式,补偿效果好。

跟踪补偿的优点是:运行方式灵活,运行维护工作量小,比前两种补偿方式寿命相对延长、运行更可靠。但缺点是控制保护装置复杂、首期投资相对较大。但当这三种补偿方式的经济性接近时,应优先选用跟踪补偿方式。

三、采取适当措施,设法提高系统自然功率因数

提高自然功率因数是在不添置任何补偿设备,采用降低各用电设备所需的无功功率减少负载取用无功来提高工矿企业功率因数的方法,它不需要增加投资,是最经济的提高功率因数的方法。下面将对提高自然功率因数的措施作一些简要的介绍。

1.合理使用电动机(下转第122页)

(上接第199页)

合理选用电动机的型号、规格和容量,使其接近满载运行。在选择电动机时,既要注意它们的机械性能,又要考虑它们的电器指标。若电动机长期处于低负载下运行,既增大功率损耗,又使功率因数和效率都显著恶化。故从节约电能和提高功率因数的观点出发,必须正确地合理地选择电动机的容量。

2.提高异步电动机的检修质量

实验表明,异步电动机定子绕组匝数变动和电动机定、转子间的气隙变动时对异步电动机无功功率的大小有很大的影响。

3.采用同步电动机或异步电动机同步运行提高功率因数

由电机原理知道,同步电动机消耗的有功功率取决于电动机上所带机械负荷的大小,而无功取决于转子中的励磁电流大小,在欠激状态时,定子绕组向电网“吸取”无功,在过激状态时,定子绕组向电网“送出”无功。因此,只要调节电机的励磁电流,使其处于过激状态,就可以使同步电机向电网“送出”无功功率,减少电网输送给工矿企业的无功功率,从而提高了工矿企业的功率因数。异步电动机同步运行就是将异步电动机三相转子绕组适当连接并通入直流励磁电流,使其呈同步电动机运行,这就是“异步电动机同步化”。因而只要调节电机的直流励磁电流,使其呈过激状态,即能向电网输出无功,从而达到提高低压网功率因数的目的。

4.合理选择配变容量,改善配变的运行方式

对负载率比较低的配变,一般采取“撤、换、并、停”等方法,使其负载率提高到最佳值,从而改善电网的自然功率因数。

通过以上一些提高加权平均功率因数和自然功率因数的叙述,或许我们已经对“功率因数”这个简单的电力术语有了更深的了解和认识。

【参考文献】

功率因数范文第4篇

一、概述

在供用电系统中除了有功电源还有无功电源,两者缺一不可,感性负载过多时,其功率因数都较低,影响了线路及配电变压器的经济运行,就必须通过合理配置无功功率补偿设备,以提高系统的功率因数,从而达到节约电能,降低损耗的目的。

1功率因数与无功功率的关系

电压与电流之间的相位差(φ)的余弦叫做功率因数,用符号cosφ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosφ=P/S。

P2+Q2=S2

在电力网的运行中,功率因数反映了电源输出的视在功率被有效利用的程度,我们希望的是功率因数越大越好。这样电路中的无功功率可以降到最小。

2输配电线路的有功功率损耗与功率因数的关系

由于导线存在着电阻,电流通过线路时,线路自身产生有功功率损耗,其有功功率损耗又与电流平方成正比。所以,线路在输送一定的有功功率时,线路自身产生的有功功率损耗与功率因数的平方成反比,提高功率因数就能降低线路的有功功率损耗。

3变压器的铜损耗与功率因数的关系

变压器在运行中,输出一定的有功功率时,其铜损耗与变压器所带负荷视在功率的平方成正比,而视在功率又与变压器的功率因数成反比,所以,提高功率因数就能使变压器的铜损耗下降。

4变压器所需容量与功率因数的关系

由于变压器在输出一定有功功率时,其视在功率与变压器的功率因数成反比,所以当变压器输出一定有功功率时,功率因数提高就能减少变压器的需要容量,从而提高变压器的供电能力。

二、提高功率因数

一影响功率因数的主要因素

1大量的电感性设备,如异步电动机、感应电炉等设备是无功功率的主要消耗者。在工矿企业所消耗的全部无功功率中,异步电动机的无功功耗占了60%~70%;而在异步电动机空载时所消耗的无功又占到电动机总无功消耗的60%~70%。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能的提高负载率。

2变压器消耗的无功功率一般约为其额定容量的10%~15%,它的空载无功功率约为满载时的1/3.因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长期处于低负载运行状态。

3供电电压超过规定范围也会对功率因数造成很大的影响。当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长得很快,供电电压为额定值的110%时,一般无功将增加35%左右。当供电电压低于额定值时,无功功率也相应减少而使它们的功率因数有所提高。但供电电压降低会影响电气设备的正常工作。

二无功补偿的一般方式

1采取适当措施,设法提高系统自然功率因数

提高自然功率因数是不需要任何补偿设备投资,仅采取各种管理上或技术上的手段来减少各种用电设备所消耗的无功功率,这是一种最经济的提高功率因数的方法:

1) 合理选择电动机的容量,使其接近满负荷运转。

2) 对实际负荷不超过额定容量40%的电动机,应更换为小容量电动机。

3) 合理安排和调整工艺流程,改善用电设备的运转方式,应限制感应电动机空负荷运转。

4) 正确选择变压器,提高变压器的负荷率(一般为75%~80%较为合适)。对于负荷率低于30%的变压器,应予以更换。

5) 对于负荷率在60%~90%的绕线转子异步电动机,必要时可以使其同步化,此时电动机可以向电力系统输出无功功率。

2人工补偿功率因数

用户功率因数仅靠提高自然功率因数一般是不能满足要求的,因此,还必须进行人工补偿,无功补偿通过采用的方法主要有3种:低压个别补偿、低压集中补偿、高压集中补偿。

1) 低压个别补偿

低压个别补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地与用电设备并接,它与用电设备共用一套断路器。通过控制、保护装置与电机同时投切。随机补偿适用于补偿个别大容量且连续运行(如大中型异步电动机)的无功消耗,以补励磁无功为主。低压个别补偿的优点是:用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也推出,因此不会造成无功倒送。具有投资少、占位小,安装容易、配置方便灵活、维护简单、事故率低等优点。

2) 低压集中补偿

低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功负荷而直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配变利用率。

3) 高压集中补偿

高压集中补偿是指将并联电容器组直接装在变电所的6~10kV高压母线上的补偿方式。适用于用户远离变电所或在供电线路的末端,用户本身又有一定的补偿作用;补偿装置根据负荷的大小自动投切,从而合理地提高了用户的功率因数,避免功率因数降低导致电费的增加。

3无功电源

电力系统的无功电源除了同步电机外,还有静电电容器、静止无功补偿器以及静止无功发生器,除电容器外,其余几种既能吸收容性无功又能吸收感性无功。

1) 同步电机

同步电机中有发电机,电动机和调相机3种。同步发电机是唯一的有功电源,同时又是最基本的无功电源,以滞后功率因数运行为主,向系统提供无功,但必要时,也可以减小励磁电流,使功率因数超前,即所谓的“进相运行”,以吸收系统多余的无功。同步调相机是空载运行的同步电机,优点是能在欠励或过励的情况下向系统吸收或供出无功,装有自励装置的同步电机能根据电压平滑地调节输入或输出的无功功率。但他有功损耗大、运行维护复杂、影响速度慢、进来已逐渐退出电网运行。

2) 并联电容器

并联电容器补偿是目前使用最广泛的一种无功电源,由于通过电容器的交变电流在相位上正好超前于电容器极板上的电压,相反于电感中的滞后,并联电容器本身功耗很小,装设灵活,节省投资;由它向系统提供无功可以改善功率因数,减少由发电机提供的无功功率。

3) 静止无功补偿器

静止无功补偿器是由晶闸管所控制投切电抗器和电容器组成,由于晶闸管对于控制信号反应极为迅速,而且通断次数也可以不受控制。当电压变化静止补偿器能快速、平滑地调节,以满足动态无功补偿的需要,同时还能做到分相补偿;对于三相不平衡负荷及冲击负荷有效较强的适应性;但由于晶闸管控制对电抗器的投切过程中会产生高次谐波,为此需加专门的滤波器。

4) 静止无功发生器

它的主体是一个电压源型逆变器,由可关晶闸管适当的通断,将电容上的直流电压转换成为与电力系统电压同步的三相交流电压,再通过电抗器和变压器并联接入电网。适当控制逆变器的输出电压,就可以灵活地改变其运行工况,使其处于容性、感性或零负荷状态。于静止无功补偿器相比,发生器相应速度更快,谐波电流更少,而且在系统电压较低时仍能向系统注入较大的无功。

功率因数范文第5篇

引言

电力电子产品的广泛使用,对电网造成了严重的谐波污染。这使得功率因数校正(PFC)技术成为电力电子研究的一个热点。功率因数校正的目的,就是采用一定的控制方法,使电源的输入电流跟踪输入电压,功率因数接近为1。传统上,模拟控制在开关电源应用中占据了主导地位[1]。随着高速度,廉价的数字信号处理器(DSP)的出现,在开关电源中使用数字控制已成为发展的趋势[2][3][4][5][6]。

本文对实现PFC的模拟控制方法和数字控制方法进行了比较,介绍了采用数字控制的独特优点。详细讨论了采用数字信号处理器作为控制核心时的设计事项和方法。

1 PFC模拟控制和数字控制的比较

功率因数校正的模拟控制方法已经使用了多年,也有现成的商业化集成电路芯片(比如TI/Unitrode的UC3854,Fairchild的ML4812,STmicroelectronics的L6561等)。图1(a)是基于UC3854的模拟控制电路结构方框图。电路采用平均电流控制方式,通过调节电流信号的平均幅度来控制输出电压。整流线电压和电压误差放大器的输出相乘,建立了电流参考信号,这样,这个电流参考信号就具有输入电压的波形,同时,也具有输出电压的平均幅值。PFC的模拟控制方法简单直接。但是,控制电路的元器件比较多,电路适应性差,容易受到噪声的干扰,而且调试麻烦。因此,模拟控制有被数字控制取代的趋势。

图1(b)是PFC的数字控制原理框图。类似于模拟方法,使用了两个控制环路:电压环和电流环。电压环通过调节平均输入电流来控制直流总线电压,电流环控制交流输入电流使之跟踪输入电压。控制过程由DSP完成,通过DSP的软件来实现电流和电压的调节。

  数字控制方法具有以下几个优点:

1)通过软件调整控制参数,比如,增益和带宽,从而使系统调试很方便;

2)大量控制设计通过DSP来实现,而用模拟控制器是难以实现的;

3)在实际电路中,使用数字控制可以减少元器件的数量,从而减少材料和装配的成本;

4)DSP内部的数字处理不会受到电路噪声的影响,避免了模拟信号传递过程中的畸变、失真,从而控制可靠;

5)如果将网络通信和电源软件调试技术相结合,可实现遥感、遥测、遥调。

  现在,数字控制PFC方法已经在深入研究。文献[7]提出了一个基于模拟仪器公司ADMC401的数字控制PFC方案,如图2所示。为了实现数字控制,模拟控制变量〔包括输入电流iL(t),输入电压vin(t)和输出电压vo(t)〕必须转换成数字量。将模拟控制变量除以他们相应的参考值(,和),得到相对值,再由ADC变换器将获得的相对值转换成数字量。其中iL,n,vin,n,vo,n分别表示相应的第n个采样值。

数字控制器包括一个电流环和一个电压环。对于电流环,将指令输入电流减去输入电流iL,n所得的电流误差ie,n输入到电流环数字PI控制器。最后,将控制器输出的占空比Dn输入到PWM产生单元,控制开关S的通断。对于电压环,PFC变换器的输入电导期待值ge,n与输入电压vin,n相乘,得到指令输入电流iL,n*。

2 数字控制的实现

在实现一个电力电子系统的实际数字控制器时,需要考虑大量的因素,比如,控制处理器的选择,采样算法和采样频率的确定,PWM信号的产生,控制器和功率电路之间的连接,硬件设计和控制算法的软件实现等。这些因素都会对系统的性能产生很大影响,需要细心设计和实际实验。

  2.1 微处理器的选择

在设计控制系统时,微处理器的选择需要考虑很多的因素,诸如功能,价格,硬件设计的简单性和软件支持等。现在,已经有多种内嵌有PWM单元和A/D转换等控制外设的DSP芯片可供选择(比如TI的TMS320C2XX系列,AD的ADMCXXX系列,Motorola的DSP56800等)。以TI公司的TMS320C2XX系列为例,它拥有很多良好的特性,比如,多个独立可编程的时钟,50ns指令周期,16位并联乘法器,两通道多路复用的10位A/D转换器,还有片内RAM和EEPROM等。这使得它成为实现功率变换系统数字控制的首选。如果需要进一步降低成本,可以选择STmicro?controller的8位DSPST52x420。

  2.2 采样算法和采样频率的选择

在设计数字控制器时,选择合适的采样频率起着重要的作用,因为,采样频率直接影响到可完成的功能和数字控制系统的可靠性,因此,它应该在合成控制器之前确定。对于更高的系统带宽要求,应该使用更高的采样频率。然而,采样频率的提高也对字长和数字控制器的计算速度提出了更高的要求。工程设计的目标总是使用更低的采样频率来达到给定的设计要求。

由于Boost变换器的输入电流含有大量谐波。因此,采样频率必须远高于开关频率,输入电流才能不失真地还原。由于开关频率已经很高( 20kHz),要采用更高的采样频率是困难的,而且,处理器也来不及处理相应的控制计算任务。而使用比较低的频率将产生频谱重叠。虽然可以在A/D转换前加入前置滤波,但是,这样又需要更高的带宽。因此,采样频率选择与开关频率同步,这样,开关纹波就成为隐性振荡,不会在还原信号中出现。这种采样方法在一个周期中只采样一次,称为SSOP(singlesamplinginoneperiod)方法。采用这种采样方法时,有一个采样点确定的问题。电感电流在开关的瞬间存在电流尖峰,如图3所示。显然,应该避免在开关点进行采样,否则系统将不能正常工作。在PFC应用中,输入电流必须跟踪输入电压,而且输出电压要保持恒定,PWM信号将在一个大的范围内变动,因此,这个问题变得更加突出。

  为了保证在每次开关周期中确定一个固定的采样点,而且远离开关点,一个简单的设想就是在两个尖峰之间(上升沿或者下降沿)的中点进行采样,即采样平均电流。但是,当上升沿或者下降沿非常窄的时候(即开关的占空比非常窄或者非常宽),采样信号的准确度仍然会受到开关噪音的影响。如图4所示,如果采用上升沿采样,当导通时间较长时〔图4(b)〕,采样点(Ai)是可靠的,反之是不可靠的〔图4(a)〕。为了克服这个缺点,采用改进的采样算法。这个算法同样是同步采样,但是,采样边沿的选择取决于开关的导通时间。如果导通时间大于关断时间,选择上升沿;反之采用下降沿。这样便很好地避免了开关噪声的影响。而且算法本身简单,计算量少。如图5所示。

2.3 PWM信号的产生

为了叙述方便,定义一个开关周期的起点p,如图6所示。对大多数数字PWM单元来说,占空比的值应该在开关周期开始之前装载入寄存器,因此,控制变量的采样应该在p点之前准备好,以便控制算法的计算及时完成。这里采用平均电流控制,选择采样点,得到每个开关周期的输入平均电流测量值。

理想的采样点si和实际采样点sr之间有一个时间延迟τd。τd由两个原因造成,一个是在信号链中低通滤波器产生的相移,另一个是开关S的开关指令和实际开关动作之间的延迟。这样,留给处理器完成控制计算的时间就是τc。延迟τd和计算时间τc共同决定了反馈环路的延迟。

式中:Ts为开关周期。

使用顶点规则采样PWM方法产生开关指令。如图7和图8所示。对于输入信号u在平衡值附近的小偏移,顶点规则采样PWM的响应可以描述为

|gPWM(jω)|=cos(ωTo)  (2)

∠gPWM(jω)=wTs/2  (3)

式中:To是稳态时开关导通时间的一半。

因为,期望的电流环的带宽在1kHz到10kHz之间(开关频率为50kHz),PWM的增益趋于统一。因此,顶点规则采样PWM的传输函数可以近似为

2.4 电流环和电压环的数字PI控制器

电压环和电流环都包括PI控制器。参看图1,一个数字PI控制器可以表达为

un=A0xn+A1xn-1+un-1  (5)

或者

gPI(z)=U(z)/X(z)=(A0z+A1)/(z-1)  (6)

等效模拟控制器的传输函数是

gPI(s)=U(s)/X(s)=KPI(1+1/stPI)  (7)

因为采样频率有限,当一个模拟转换函数采样生成离散时间函数时,如果模拟函数包含了频率高于1/2采样频率的分量,会发生重叠效应,如图9所示。

  为了消除高频分量(频率大于fs/2)的影响,使用Tustin规则

s=2/Ts(z-1)/(z+1)  (8)

那么数字控制器的参数A0和A1和模拟等效参数KPI和τPI的关系为

3 结语