电大护理论文(精选5篇)

  • 电大护理论文(精选5篇)已关闭评论
  • A+
所属分类:文学
摘要

随着光伏发电系统的日益成熟且成本越来越低,光伏系统并网成为利用这一资源的最好方式。然而,光伏发电有其自己的特点,光伏发电系统的并网,使配电系统从单系统放射状网络变为分布有中小型系统的有源网络,改变系统的潮流分布,进而影响配电网继电保护的合…

电大护理论文(精选5篇)

电大护理论文范文第1篇

【关键词】光伏发电;配电网;继电保护

0 引言

随着光伏发电系统的日益成熟且成本越来越低,光伏系统并网成为利用这一资源的最好方式。然而,光伏发电有其自己的特点,光伏发电系统的并网,使配电系统从单系统放射状网络变为分布有中小型系统的有源网络,改变系统的潮流分布,进而影响配电网继电保护的合理性,对配电系统的继电保护造成一定的影响[1-2]。

目前国内外很多学者已经对此开展了大量的研究工作,主要包括光伏发电短路特性和计算模型,分布式光伏发电系统及其接入位置、接入容量的不同对配电网电流保护、重合闸、自动化策略的影响等内容。文献[3]针对用户侧光伏发电并网对配电网继电保护的影响进行了分析,提出了继电保护配置方案以及保护整定原则,为今后的工程应用提供一定的借鉴。文献[4]指出,分布式光伏发电接入中低压配电网后,将对电流保护的灵敏性和选择性产生影响,影响程度与光伏电源的接入位置、装机容量有紧密的关系。同时,含分布式光伏发电的配电网不宜采用快速重合闸。文献[5]采用动态等值阻抗的建模方法,将光伏发电站表示为戴维南等效电路来研究光伏电站接入配电网后的继电保护整点计算。

因此,本文从理论上分析了光伏并网发电对配电网继电保护的影响,包括光伏系统接入位置和接入容量,并指出在今后配电网继电保护配置以及整定计算时,需考虑并网光伏发电系统。本文的研究成果也为光伏并网发电的工程实施提供理论依据和技术支持。

1 光伏电源接入位置对继电保护的影响

我国10kV配电网一般为单电源辐射形式并以三段式电流保护为主保护,图1为10kV配电网基本接线图。设系统容量为SS,系统电压为ES,系统电抗XS,光伏发电系统容量为SE,光伏发电系统电压为EP,等效阻抗为XP。各线路电抗值为X1、X2、X3、X4、X5、X6。K1、K2、K3、K4、K5、K6分别为本段末端发生三相接地短路。

由单辐射网络结构可知,故障发生在图1所示配电网的6个不同位置时,短路电流的变化方向是一致的。下面假设K2处发生故障,保护2处测得短路电流Id2计算如下:

很明显,保护2处的短路电流明显增加。因此在K1、K2、K3、K4、K5、K6发生故障时,故障处的电流势必会增大。故障处电流不仅由系统提供,还有光伏电源的影响。因此光伏电源在始端接入会使保护的范围扩大、降低保护的灵敏性。当短路电流增大到一定值时,会使I段保护和下级的I段保护失去选择性。情况严重时还会波及下级线路II段保护的选择性。

同样的方法可以分析光伏电源接入配电网中端或末端对继电保护的影响。光伏电源在中端接入会使相邻馈线保护的范围扩大、降低保护的灵敏性。当短路电流增大到一定值时,会使I段保护和下级的I段保护失去选择性,情况严重时还会波及下级线路II段保护的选择性;光伏电源在末端接入时,会使相邻馈线的保护装置的保护范围变大,灵敏性降低,并有可能使相邻馈线的保护失去选择性,当容量达到一定值时会使相邻馈线的保护失去选择性。

2 光伏电源接入对配网继电保护影响的仿真分析

针对图1所示的10kV配电网在PSCAD仿真软件环境下进行仿真计算,分析光伏电源接入对配电网继电保护的影响分析,其中光伏电池等效电路图如图2所示。

光伏并网发电采用增量电导法控制光伏电源输出最大功率,其并网系统结构图如图2所示。

根据光伏阵列可以组成5MW、10MW、20MW容量的光伏发电系统。光伏系统接升压斩波电路,并通过控制IGBT 的导通率,实现最大功率跟踪。后经DC/AC转换变流器实现并网。配电网线路参数见表1。

当光伏接入馈线末端时,接入容量分别为5MW、10MW、20MW时,数据如表2所示。

当K2发生故障,相比未接入光伏电源时流经保护2的短路电流增大,并随着容量的上升短路电流增加的越多。流经保护的4处的短路电流值,不随容量的变化而变化。

光伏接入馈线中端时,接入容量分别为5、10、20MW时,数据如表3所示。

当K2发生故障时,相比于未接入光伏电源的情况,保护2处的短路电流增大,保护4处为反向电流。当K4发生故障时,流经保护4短路电流变化不大。当k5发生故障时,流经保护5处的短路电流增加。

当光伏接入馈线首端时,接入容量分别为5、10、20MW时,数据如表4所示。

当K2发生故障时,相比与未接入光伏系统时短路电流增大。当K4发生故障使,相比与未接入光伏系统时短路电流增大。并且随容量的增加短路电流值随着增加。

由以上的数据分析可知,我们所做的理论研究是正确的。实验数据与理论分析相匹配,验证上了理论分析的正确性。

3 结论

本文通过理析和仿真分析计算了光伏电源电源接入配电网对继电保护的影响,理论分析和仿真计算的结果一致,并获得如下结论:

(1)光伏电源接在配电网的始端时,其对配电网的短路电流有助增作用。短路电流变大,对电流保护的I段保护范围扩大,而II段保护又是根据下级线路I段整定,所以II保护范围也相应扩大。

(2)当光伏电源接在配电网的中端时,当故障发生在本馈线光伏电源上游时,光伏电源接入对相邻馈线不会产生影响。光伏电源会对下游继续供电,并向短路处提供短路电流,形成孤岛效应。此时,接入的容量越大对本馈线故障处提供短路电流越大,对相邻馈线、本馈线故障处保护的短路电流不会产生影响。

(3)光伏电源接在配电网的末端时,当故障是发生在本馈线上时,其对本馈线故障处上游短路电流没有影响,但故障点下游处会由光伏电源提供反向的短路电流,由于在故障段只有上游有保护装置,所以下游会形成孤岛效应。光伏电源容量越大,对故障点下游提供的反向短路电流越大,由于没有保护方向性可能产生误动。

【参考文献】

[1]石振刚,王晓蔚,赵书强.并网光伏发电系统对配电网线路保护的影响[J].华东电力,2010,38(9):1406-1409.

[2]李斌,袁越.并网光伏发电对保护及重合闸的影响及对策[J].电力自动化设备,2013,33(4):12-18.

[3]叶荣波,周昶,施涛,等.用户侧光伏发电并网对继电保护分析[J].科技通报,2014,30(1):158-162.

电大护理论文范文第2篇

关键词:卓越工程师;继电保护;教学改革

“卓越工程师教育培养计划”是国家教育部贯彻落实《国家中长期教育改革和发展规划纲要(2010-2020年)》和《国家中长期人才发展规划纲要(2010-2020年)》的重要改革项目,“卓越工程师”以实际工程为背景,以工程技术为主线,将学生的工程能力和素养作为培养目标,目的在于适应社会发展的需要,培养创新能力强的高素质工程技术人才。

电力系统继电保护是电气类专业的主要课程之一。继电保护技术应用广泛,随着电力系统自动化技术的飞速发展,电力系统继电保护进入数字化、微机化和网络化阶段,其在更新自身技术的同时,与微机、通信技术相融合,电力系统技术日趋先进,同时也日趋复杂。

一、继电保护课程的教学现状

目前继电保护课程理论教学环节大多按照教材章节的顺序,将电力系统继电保护分为电网的电流保护、距离保护、纵联保护和电力主设备保护,按模块分别进行讲解,在教学过程中突出知识的系统性和理论的完整性。学生在电力系统继电保护理论知识的学习过程中感觉深奥难懂。继电保护技术的理论教学与实践教学脱节,学生在完成部分专业理论学习后,按照指导书的内容按部就班地进行实验和课程设计。学生在整个学习过程中处于被动地位,缺乏思考,缺少对理论知识应用的分析,更缺乏对理论设计计算结果的仿真验证。目前,电力系统继电保护的教学已经不能适应培养具有工程实践能力人才的教学目的,因而继电保护课程改革势在必行。

二、继电保护课程教学改革的探索

1.调整教学内容

依据“卓越工程师”的培养方案,修订电力系统继电保护课程教学大纲、继电保护课程设计教学大纲、继电保护调试实习教学大纲;调整理论课程内容,将理论教学模块化、项目化。将理论教学分为几个模块,设置线路、变压器、发电机、母线等电力设备保护教学任务单元,使学生对继电保护技术形成一个整体的概念;理论知识依托于实际工程项目进行讲解分析,以项目为载体,将工程概念贯穿于教学始终,增加实际工程实验项目的教学学时,便于继电保护技术实际应用能力的培养;设置与理论教学相匹配的实验实习项目,充分发挥模拟型实验装置和微机型实验装置的优点;重点做好微机保护实验项目建设,设置电力系统各种运行状态下的参数,查看系统状态和保护动作状态。

2.优化教学方法

教师在课堂教学中要充分利用现代化教学设备,引入PPT课件教学,增加视频及动画演示内容,采用多种教学手段,将继电保护理论知识生动地展示给学生,改善课堂学习氛围,增强学生的学习兴趣;将电力系统继电保护技术发展的前沿知识引入课堂,针对应用前沿技术的工程及学生理论学习中普遍存在的题,增加课堂讨论部分;提高学生学习继电保护课程的积极性,鼓励学生多思考、多提问、多总结;将MATLAB/SIMULINK计算机仿真引入实践教学,对设计计算结果与仿真结果进行比较分析,使学生对继电保护动作前后电力系统的运行情况有直观的认识。

3.培养应用型人才的教学思路

在培养创新型高级工程人才基本目标的指导下,电力系统继电保护课程树立以理论教学为基础、以工程实例为依托、以知识应用与实践为目的的教学理念,其改变了以往实践教学环节的教学模式。教师在实验和课程设计中只给出实践目的、注意事项、设备和要求,具体的实践方法、步骤和报告由学生自行设计完成。教师将课程实习项目由部分验证性实习全部改为综合研究设计性实习项目,设置与理论教学相匹配的实验实习项目,充分发挥模拟型实验装置和微机型实验装置的优点,以模拟型保护装置为基础,灵活模拟各种接线错误,以此锻炼学生的分析能力。根据不同的课程设计题目和现有实验室的条件,要增加实验验证或仿真验证环节,通过理论教学与实践环节相结合,提高学生的实际工程素质,培养学生的创新能力和独立解决问题的能力。

三、结语

在“卓越工程师”目标下,只有适应继电保护技术的发展趋势,坚持基本理论与工程应用相结合,不断探索新的教学方法,引入新的教学理念,合理组织教学内容,才能培养出更多优秀的工程人才,提高电力系统继电保护专业人才的培养质量。

参考文献:

电大护理论文范文第3篇

论文关键词:保护接零注意事项

 

为防止用电设备金属外壳因故障带电,造成接触电器的人员发生触电事故,可将用电设备正常情况下不带电的金属外壳与低压电网中的零线连接,叫保护接零。笔者发现许多用户,甚至连一些初、中级电工对保护接零应注意的问题不是很清楚,有的还存在误区,导致在施工、维修时存在大量安全隐患。为确保用电安全,就接地电网用电设备防触电采取保护接零时应注意的安全问题介绍如下。

1、根据用电环境安全程度确定配电类型

无爆炸危险和安全较好的场所,可选择TN C系统。这种系统是干线部分保护零线与工作零线完全共用的系统,现在已很少用。低压进线的车间以及民用楼房物理论文,目前普遍选用TN C S系统。该系统是干线部分保护零线与工作零线前部共用(构成PEN线),后部分分开的系统。爆炸危险性较大或安全要求较高的场所,必须选用TN S系统。该系统是有专用保护零线(PE线),即保护零线与工作零线(N线)完全分开的系统,也就是通常所说的三相五线制供电系统,随着经济的发展,一些地区的居民用电,也开始采用这种供电方式。

2、不允许工作接地和零线断开

用电设备防触电保护采用保护接零,低压供电系统的工作接地必须可靠,即电源中性点必须有良好的接地,其接地电阻应在4 以下。除单相回路的工作零线外,三相四线制线路的零线上不能安装熔断器和开关。零线不允许断路。否则,引起三相不对称负载不的相电压不对称,损坏电器,问题更为严重的是,采取保护接零的用电设备金属外壳带上相电压,而引起触电事故。为防止工作零线断开,除中性点有良好的接地外,还必须将零线重复接地。

3、零线截面符合技术规范要求

除单相负荷外,正常时零线中没有电流或只有很小的不平衡电流物理论文,所以截面可以比相线小。但从确保零线保护的安全和可靠出发,为使故障时有足够的短路电流促使保护装置迅速动作和降低故障时的零线对地电压,零线阻抗应尽量小。为此零线应有足够的截面积。一般在满足线路单相负荷要求的前提下,零线截面不得小于相线截面的二分之一。用电设备保护零线还应有足够的机械强度,采用铜线时不得小于1.5平方毫米;采用铝线时不得小于2.5平方毫米;裸线明敷时,还应分别加大到4平方毫米和6平方毫米核心期刊目录。

4、必须按照安全要求选择和整定保护设备(熔断器或断路器)的额定电流

采用保护接零的低压电网,必须按照安全要求选择和整定保护设备的额定电流。保护接零实质上就是当用电设备发生漏电时,借零线形成单相回路,使漏电流加大为短路电流迫使线路上的保护装置迅速动作而切断电源。因此,保护接零必须有可靠的短路保护或过电流保护装置相配合。各种保护装置必须按照安全要求选择和整定,以提高保护接零的可靠性。保护装置动作后必须必须查清故障点和故障原因,特别应注意保护零线及其连接处在故障短路时是否受到损坏。

5、用电设备的保护零线与工作零线连接要可靠

用电设备的保护零线与工作零线,连接必须牢靠,保证接触良好。保护零线应该接在用电设备的专用接地螺丝上;必要时可加弹簧垫圈或焊接。保护零线最好不使用铝线。用电设备的保护零线与工作零线的连接部位,应接在不易受到机械损伤的地方。用电设备的保护零线必须通过易受到机械损伤的地方时应对保护零线妥善保护。同时,要经常检查保护零线,发现隐患及时排除。

6、单相负荷线路保护零线不得借用工作零线

在接三眼插座时,不准将插座上接电源零线的孔同保护零线的孔串联。否则,如果接零线路松落或折段,将会使设备金属外壳带电或当零线与火线接反时使外壳带电。三眼插座的正确接法是:将插座上接电源中线物理论文,即工作零线的孔同保护零线的孔用两根导线并联接到公用工作零线上。也就是有单相负荷的线路,保护零线不得借用工作零线。另外,所有电器的保护零线不得串联,而应当直接连在公用工作零线或公用保护零线上。

7、保护接零防触电并非万无一失

用电设备采用保护接零,只能消除电器的外壳与电源的火线连接的严重故障,不能排除电器外壳的漏电故障。所以电器外壳在采用保护接零的同时,还应采取其他保护措施消除电器外壳的漏电故障,目前常用的方法是安装电流型漏电保护器。

8、同一低压电网中不允许保护接地与保护接零混用

在同一低压电网中(指同一台变压器或同一发电机供电的电网)不允许将一部分用电设备采用保护接地,另一部分用电设备采用保护接零。否则,当接地设备发生碰壳故障时,使零线电位升高,其接触电压可达到相电压的数值,这就增大了触电的危险性。

电大护理论文范文第4篇

关键词:变流器;短路电流;计算方法;继电保护

中图分类号:TM744 文献标志码:A 文章编号:0253-987X(2015)04-0024-08

通过对电力元件的控制,实现电能生产环节的自动化、智能化是电网运行者不变的追求。要想实现这一目标,必须对电力元件进行调节和控制。随着现代科学技术的不断发展和提高,为实现电力元件的可控性,电力电子器件在发电、输电、配电以及用电环节广泛使用。电力电子器件在电力系统中的应用主要有以下几个方面。

(1)新能源与分布式发电。随着化石能源的枯竭,新能源发电的重要性越来越突出,当前大规模并网运行的主要是风力发电和光伏发电,这两者均无法直接并网,需要经过变流器变换后方可馈入交流电网。

(2)直流以及交直流混合输电。无论高压直流输电、柔性直流输电还是交直流混合输电,都是通过变流器实现电能的交直与直交变换。研究变流器的动态特性,有助于提高输电线路保护的可靠性。

(3)柔流输电。输电网的柔流输电与配电网的柔流输电都大量采用电力电子器件,研究电力电子器件的调节特性,可以更好地实现对电力系统的调节与控制。

新能源发电以及直流输电、交直流混合输电是目前电力系统发展的重要方向,风机、光伏电源、换流器等作为一类含变流器的电力元件是其重要的组成部分,而变流器是该类电力元件中应用最广泛的电力电子设备。变流器是一类由电力电子器件及其控制驱动电路组成的电力设备,可以实现对电能的变换、调节和控制,在智能电网中具有重要应用。智能电网要更好地发展,必须对含变流器电力元件的特性进行研究分析。

继电保护是电网安全运行的第一道防线,对快速切除故障、迅速恢复供电、提高供电连续性、减少设备损坏等具有重要作用。故障特征分析是继电保护研究的前提和基础,其关键问题在于研究电源输出短路电流的暂态变化特性。传统电力系统是由同步机和输电线路构成的线性网络,电源的响应特性较明确,短路电流易于计算分析。随着新能源发电以及直流输电技术的发展,电力电子器件大量应用于电力系统,电网不再只含单一类型的电源。含变流器电力元件作为一种新的电源形式被引人系统,受变流器特性影响,其输出特性明显不同于同步机,使得系统表现出许多异于传统电网的故障特征。为了更好地分析含变流器系统的故障特征,给今后新型电力系统继电保护整定计算提供依据,有必要研究含变流器电力元件故障过程中输出短路电流的理论分析与计算方法。

由于频带宽度的限制,互感器对一次系统中的高次谐波具有一定的滤波作用,电网的二次侧一般只能获取系统电流的低频分量。虽然目前已经提出许多基于暂态量的保护新原理,但当前现场广泛应用的继电保护原理仍旧主要关注系统故障过程中工频电气量的变化规律。因此,从理论上分析含变流器电力元件输出的工频响应特性,得到其短路电流中工频分量在故障暂态的变化规律,对电力系统继电保护分析及整定计算意义重大。

电大护理论文范文第5篇

关键词:继电保护;可靠性;发展现状;评估指标;状态空间法

中图分类号:TM77 文献标识码:A 文章编号:1006-8937(2013)06-0086-02

1 继电保护系统发展简史

继电保护系统泛指继电保护技术和由各式各样继电保护装置所构成的继电保护系统。这其中包括继电保护的工作原理的设计、调试、研发组装、调整等诸多技术。同样涵盖所获取电量的电压值,互感线圈二次回路,还有继电保护设备至断路器这一整批设备。目前的继电保护技术是依靠电力系统的趋势而发展的。短路是电力系统无法避免的问题之一,当电流增大,短路的可能性随之增大,而工程技术人员为防止发电机组因线圈短路发热烧断,会采取在供电线路中串联熔断器的做法。一旦发生短路,电流迅速增大,大电流会优先使熔断器熔断。此时,短路设备迅速断开,发电机组才得以保护幸存下来。由于该保护措施简单易于操作,使得目前部分低压线路和简单用电设施仍在沿用。当该领域研究到一定阶段时,为适应电力系统的形式,无论是用电设备,还是发电机组,其功率和容量日益增大。而且电网改造后,线路的连接方法日渐复杂精细。当前情况下,简单熔断器的选择性和快速性无法适应需求了,毕竟它无法在19世纪末期直接装载在断路器上。可反应一次电流过电流的继电器应运而生,继电器在19世纪初期才开始应用在电力系统线路的保护上。而正是基于此,其被称为开机电气保护系统的先河。随之而来的是1901年的感应性过电流继电器,1908年提出比较被保护元件两端电流的电流差动保护原理,1910年方向性电流保护得到推广应用,衍生了电流电压比保护理论。顺应了1920年距离保护装置当继电保护系统发展到一定程度时,伴随着新材料,生产方式,器件等大量关联学科的大发展。继电保护系统无论是从形式、结构,还是加工工艺上都有了很大的提升。有了静态继电保护、数字式、继电式这三个阶段。而当发展到20世纪50年代,晶体管技术日趋成熟,晶体管式继电保护装置出现了。而这种继电保护系统具有接受指令迅速,整体体积小,无机转部件,且不存在触电等诸多特点。而正因为此,我国大量采纳了晶体管式继电保护系统。至20世纪80年代后期,晶体管式也正向集成电路式缓慢过渡。而静态继电保护也成为了当下的主要形式。到了20世纪90年代后半期,由于有了数字式继电保护设施与调度自动化的支持,无人自动化运行技术与变电站自动化技术得以迅猛发展。而集控制面板、测量测绘、保护机制、数据通讯为一体的综合自动化设备成为了我国大规模在建变电站所用的二次设备。而这为我国继电保护层次的发展起到了重要的指导和技术支持作用。

2 新保护原理的提出与配置方案

①当前电网改造使目前的电网环境更加复杂。继电保护系统可靠性的研究成为了当务之急。早些年旧的系统保护基本是简单的继电保护系统。不具有区别正确被保护元件运行状态是区外故障还是保护区故障的功能。简单来说就是无法鉴别正常运行状态还是故障状态。为了实现保护装置这一目标,就要以电力系统的故障前后物理量变化值为基础,使之能够判断电力系统故障与否,其所显现的一些特征如下:电流增大、电压降低、电压和电流间相位角发生。只要我们能合理的判断获取故障时那些量的变化值,便可制定出各种行之有效的继电保护装置。另外不仅有以上反应工频电器量值的判断,还有 “非公频电器量反值”的判断依据。以其为指标,当这种传达的指标积累到一定数值时,工程技术人员便可采用逻辑推理,对数据进行汇集、采集、整理、处理。

②对继电保护系统的要求。我们安装继电保护装置的作用是对继电器进行继电保护。而这就必须在技术指标上达到灵敏性、可靠性、选择性、速动性。灵敏性是一种对保护装置的反应能力。具体是当我们所使用的电气设备或电网线路在发生严重不稳定运行故障时所发挥的应急作用。可靠性是继电保护系统的稳定性,可概括为安全性和依赖性。依赖性表现在规定范围内进行应有动作的可靠程度。而安全性则为继电系统不需其发生动作时不做出动作。继电线路的拒动性和误动作都能使电力系统崩溃甚至陷入长时间的瘫痪。速动性是指继电保护系统在故障发生时,会快速反应切除故障。试想我们昂贵的设备在低电压、高电流恶劣环境下运行,会带来怎样的危害。选择性是相邻两者间线路和设备将故障排除,仅把产生故障部分从该系统中切除,从而使其它非故障部分得以继续工作。

3 继电保护系统可靠性研究现状

根据以往文献资料可以看出,可靠性理论在继电保护的应用研究处于稳步发展时期,毕竟该领域可参考的文献资料并不那么丰富。世界各国的著名学者都对如何评估继电保护系统可靠性进行了长期的技术攻关。在该系统可靠性的指标体系内,无论是理论推导还是工程实践。都取得了一定的实质性的进展。在众多研究继电系统可靠性的方法中,不少专家运用了“状态空间法”,这是在可修复系统领域能找到的高效途径之一,即利用“状态空间法”对其进行运算求出可靠性指标。在各个领域可靠性概率数据明确的前提下进一步综合其他方面的可靠性的指标,进行继电保护系统可靠性数据的整合,分析运算,这对优化问题有很大的促进作用。建立一套继电保护系统可靠性评估体系,无论是对我们研究继电保护的长期以来的可靠性程度,还是对电网运行的角度迅速预测目前存在的可能风险,都具有重要的作用。这需要我们持久的对该继电保护系统可能出现的各种不稳定状态进行研究,之后就从所存在的可能性或预估的严重程度这两个方面进行量化考核评估。而目前我们对“继电保护系统可靠性评估体系”的探讨主要把继电保护系统或继电保护设施作为研究的对象,所以当有必要综合考虑该误动与正确动作、误动结合经济效益等限制时,需有机结合运用状态空间法这一途径。而且以概率法和相应的方法建立出一套出可靠性研究的模型,并严格的依据模型模量来采取定性或定量的分析评估研究。

4 继电保护系统可靠性研究方面的意义

继电保护系统是根据元件中电气量的骤变完成继电保护作用的。在当前电气环境下,电力系统能否安全并持续运转直接影响着国民经济的发展。故而,该系统的可靠性要求对运行的作用可见一斑,可靠性问题就被提到了前所未有的高度。但纵观国际,也并没有制定非常成熟并完备的体系,所以结合目前的形势发展,需要一步一个脚印,先定一个短期切实可行的技术标准,为往后进一步深层次的继电保护设施可靠性打下坚实的基础。这为防止近些年来因电网故障导致的大范围停电,给国民经济发展和群众生产生活带来影响提供了一定的保障。继电保护是处于我们保障大电网安全的第一道防线,其可靠、快速、正确的动作将帮助我们有效地阻止系统状态进一步的恶化,从而起到保障电网安全可靠运行的作用。对此提高继电保护系统可靠性就体现出了举足轻重的地位和意义。

5 结 语

针对目前继电保护系统可靠性研究现状,需要进一步使之完备。数字化保护与四大要求理论已经针对应用研究全面展开了,目前继电保护系统可靠性是重中之重,它将根据所涉及各个领域的需要使继电系统可靠、稳定运行。可见其主导地位,特别是当前的国际大背景下,全数字化等各种新理论和技术纷纷问世,其相关设施也将愈加复杂,继电保护系统可靠性会涉及许多不确定因素,指标评估困难等,因而仍有待于进行深入的研究。

参考文献:

[1] 郭永基.电力系统可靠性分析[M].北京:清华大学出版社,2003.

[2] 尹项根,陈德树.主设备保护运行情况评价方法的讨论[J]. 电力自动化设备,1996,(3).